

Discovery XR656

Предварительная информация

GE Healthcare

ВВЕДЕНИЕ	3
ПРЕДВАРИТЕЛЬНАЯ СТАДИЯ	3
ФИНАЛЬНАЯ СТАДИЯ	
ОСНОВНОЕ И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ	
ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ	7
РАЗМЕРЫ ПОМЕЩЕНИЙ	
ХАКТЕРИСТИКИ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ	7
ТЕМПЕРАТУРАЭКСПЛУАТАЦИИ	7
ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ	
УСЛОВИЯ ХРАНЕНИЯ ОБОРУДОВАНИЯ	8
ВЕНТИЛЯЦИЯ	8
УСЛОВИЯ ОКРУЖАЮЩЕИ СРЕДЫ	8
РАСПРЕДЕЛЕНИЕ НАГРУЗК НА ПОЛ, КРЕПЛЕНИЕ	9
РАСПРЕДЕЛЕНИЕ НАГРУЗКИ НА ПОТОЛОК., КРЕПЛЕНИЕ	10
ЭЛЕКТРОПИТАНИЕ	
ТРЕБОВАНИЯ К ПИТАЮЩЕЙ СЕТИ, ОБЕСПЕЧИВАЕМЫЕ ЗАКАЗЧИКОМ	11
ХАРАКТЕРИСТИКИ	
ЭЛЕКТРОПИТАНИЯ	11
ЗАЗЕМЛЕНИЕ	12
ТЕЛЕМЕТРИЧЕСКАЯ СВЯЗЬ	11
ДОСТАВКА	
ПРИЕМКА ПОМЕЩЕНИЯ	
СИСТЕМНЫЙ ШКАФ НА КОЛЕСИКАХ	13
СТОЙКА СНИМКОВ НА ТРАНСПОРТИРОВОЧНЫХ ТЕЛЕЖКАХ	13
ТИПОВОЕ РАСПОЛОЖЕНИЕ СИСТЕМЫ	14
ТИПОВЫЕ РАЗМЕРЫ СМОНТИРОВАННОГО ОБОРУДОВАНИЯ	14
VCПОВНЫЕ ОБОЗНАЧЕНИЯ	15

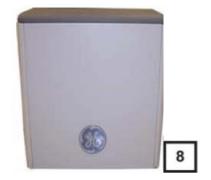
ВВЕДЕНИЕ

ПРЕДВАРИТЕЛЬНАЯ СТАДИЯ

На предварительной стадии, предшествующей подписанию контракта, Заказчику передаются представленные ниже документы с тем, чтобы помочь в выборе решения, отвечающего специфическим требованиям Заказчика.

ФИНАЛЬНАЯ СТАДИЯ

После подписания контракта Заказчику передается документация, содержащая все необходимые для него технические характеристики, относящиеся к заказанному оборудованию и условиям его размещения – техническое задание (ТЗ).

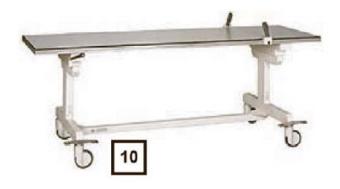

ВНИМАНИЕ!

Представленная документация действительна на указанную дату и может изменяться по мере совершенствования оборудования.

ОСНОВНОЕ И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

11

GE Healthcare


1 Основное оборудование

	Оборудование	Вес кг	Тепловыделение кВт
1	Консоль управления	40,2	1,037
2	Стол пациента	450	2,181
3	Системный шкаф	320	1,427
4	Потолочная подвестка, Х-гау трубка, коллиматор	413,3	0,828
5	Пристенная стойка снимков	280	0,1
6	Беспроводной детектор FlashPad	4,5	
7	Блок инициализации детектора ТІВ	7	0,02
8	Держатель решеток	13,8	
9	Зарядное утройство для аккумуляторов		
10	Аккумуляторы детектора		
11	Приемопередатчик сигнала беспроводного детектора	0,8	

2 Дополнительное оборудование

	Оборудование	Вес кг	Тепловыделение Вт
10	Рентгенопрозрачный мобильный стол, неподъемный	102	-
11	Рентгенопрозрачный мобильный стол, подъемный	310	-
12	Стойка поддержки пациента	90,7	-
13	Подставка для детектора	15	
PDB*	Силовой распределительный щит	62	-

(*) – не показано

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

РАЗМЕРЫ ПОМЕЩЕНИЙ

	Допустимые для монтажа основного оборудования	Нормы (СанПиН 2.6.1.1192-03)
Консольная комната	2м x 2м (4 м ²)	6 m ²
Процедурная Комната	5,2м x 5,0м (26 м ²)	26 m ²

Высота помещений: рекомендуемая 2,9 м минимум 2,74м.

ХАКТЕРИСТИКИ ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ

Условия окружающей среды должны обеспечивать комфорт для пациентов и обслуживающего персонала и находиться в указанных ниже пределах:

ТЕМПЕРАТУРА ЭКСПЛУАТАЦИИ

* комната обследования (процедурная)	$10^{0}\text{C} - 35^{0}\text{C}$ (21 ^{0}C -24 ^{0}C для комфорта пациента)
* комнаты управления и компьютерная (техническая)	$10^{0} - 35^{0}$ C
Изменение температуры	не более 3 ⁰ С/час

ОТНОСИТЕЛЬНАЯ ВЛАЖНОСТЬ

* комната обледования (процедурная)	30 – 80 % без конденсации
* комната управления и компьютерная	30 – 80 % без конденсации
* изменение влажности	не более 5 В /час

(*) Указанные условия должны поддерживаться круглосуточно При достижении предельных значений должен подаваться визуальный и/или звуковой сигнал, предупреждающий об опасности повреждения системы.

УСЛОВИЯ ХРАНЕНИЯ ОБОРУДОВАНИЯ

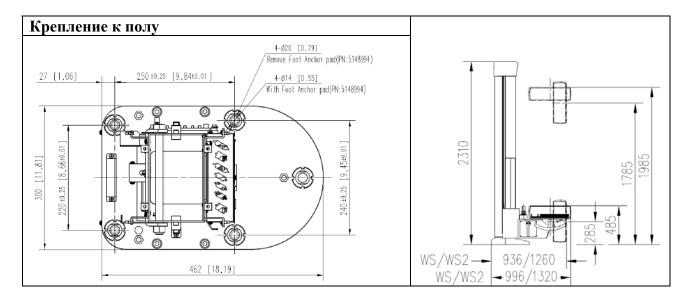
Температура	0 C – +40 C
Относительная влажность	20 - 85 % без конденсации
Срок хранения	не более 90 дней

ВЕНТИЛЯЦИЯ

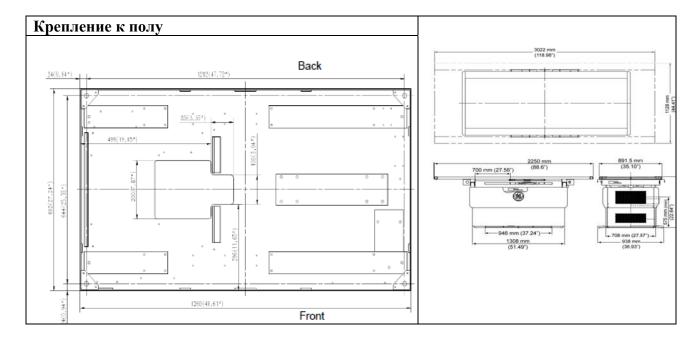
• В соответствии с местными стандартами для каждого помещения.

УСЛОВИЯ ОКРУЖАЮЩЕИ СРЕДЫ

- Максимальная высота над уровнем моря 2440 м
- Атмосферное давление 650 1060 kPa
- При использовании ковровых покрытий использовать антистатические покрытия или обрабатывать покрытия антистатическими растворами

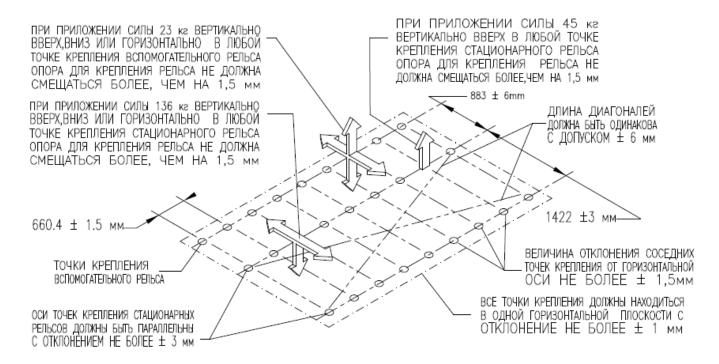

ВНИМАНИЕ!

Не устанавливать проявочных машин, не оборудованных вытяжкой, вблизи комнаты обследования (процедурной) для предотвращения выделения газов от реактивов и попадания их в процедурную



РАСПРЕДЕЛЕНИЕ НАГРУЗКИ НА ПОЛ, КРЕПЛЕНИЕ

1. **Для пристеной стойки**: Крепление осуществляется к бетонному основанию на полу при помощи анкеров (M10).



- 2. Для консоли: Без спец.требований
- 3. Для стола пациента: стальная плита основания (поставляется в составе оборудования).
- ⇒ Бетонное основание в зоне монтажа плиты основания стола пациента должно быть монолитным и толщиной не менее 100мм. Уклон бетонного основания не более 1 мм/м по всем направлениям. Неплоскостность не более 2.5 мм.

РАСПРЕДЕЛЕНИЕ НАГРУЗКИ НА ПОТОЛОК, КРЕПЛЕНИЕ

МАКСИМАЛЬНАЯ НАГРУЗКА НА КАЖДЫЙ БОЛТ — 160 кг, ОДНАКО КАЖДЫЙ БОЛТ ДОЛЖЕН ВЫДЕРЖАТЬ УСИЛИЕ НА ОТРЫВ 635 кг, НАПРАВЛЕННОЕ ВЕРТИКАЛЬНО ВНИЗ.

ЭЛЕКТРОПИТАНИЕ

Характеристика электропитающих цепей			
Электропитание	3-фазное		
Частота / напряжение	50-60 Hz ±1% / 380 Â ±10%		
Для типа генератора	50 кВт	65 кВт	80 кВт
Мощность тах мгновенная:	70 кВА	97кВА	125кВА
Максимальный кратковременный ток, À	110A	147A	190A
Средний ток, А	7A	7A	7A

Характеристика злектропитающих цепей

ТРЕБОВАНИЯ К ПИТАЮЩЕЙ СЕТИ, ОБЕСПЕЧИВАЕМЫЕ ЗАКАЗЧИКОМ

- Трехфазная 4-проводная питающая линия (3 фазных провода, 1 заземляющий провод, без нейтрали).
- Питающая линия должна быть подведена к силовому блоку (PDB), содержащему защитные и управляющие устройства и продолжена к месту установки стола пациента.
- Сечение питающего кабеля должно быть рассчитано в соответствии с его длиной и максимально допустимой потерей напряжения, которая не должна превышать 2% от номинального значения для данной линии питания.

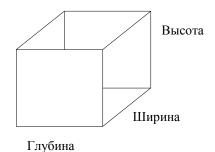
ХАРАКТЕРИСТИКИ ЭЛЕКТРОПИТАНИЯ

- Питающая линия должна быть полностью независима от линии питания другого оборудования, работа которого может привести к возникновению помех (подъемники, кондиционеры, рентгеновское оборудование с высокой скоростью съемки и др.).
- Любое оборудование, расположенное в помещениях, где установлены блоки Discovery XR650, но не относящиеся к нему, должно иметь отдельное электропитание (освещение, розетки, различное оборудование и др.)

ЗАЗЕМЛЕНИЕ

- Заземление оборудования GE Healthcare выполняется в соответствии с системой TN-S смотри ГОСТ Р 50571.2-94 (МЭК 364-3-93) "Электроустановки зданий. Часть 3. Основные характеристики".
- Заземление прочего оборудования и розеточных сетей кабинета смотри ГОСТ Р 50571.28-2006 (МЭК 60364-7-710:2002) "Электроустановки зданий. Часть 7-710. Требования к специальным электроустановкам. Электроустановки медицинских помещений".
- Для заземления всего оборудования и розеточных сетей кабинета использовать единое заземляющее устройство (главную заземляющюю шину). Общее сопротивление растеканию заземляющего устройства -*не более 2 Ом*.
- Заземление блоков оборудования GE Healthcare выполняется отдельными проводниками на шину заземления, расположеную в PDB и соединенную с заземляющим устройством (главной заземляющей шиной) отдельным изолированным медным проводом сечением не менее 50 кв.мм, который должен быть подведен к месту установки PDB вне кабельных трасс, предназначенных для прокладки кабелей оборудования GE Healthcare, и иметь запас по длине не менее 1,5 м.

ТЕЛЕМЕТРИЧЕСКАЯ СВЯЗЬ


Выделенная телефонная линия с отдельной розеткой, используемая исключительно для подключения модема должна быть установлена не далее 1 м от консоли оператора. Это может быть прямая телефонная линия или линия, проходящая через коммутатор учрежденческой автоматической телефонной станции (УАТС) с автоматическим распределением вызовов.

ДОСТАВКА

ЗАКАЗЧИК ОБЯЗАН

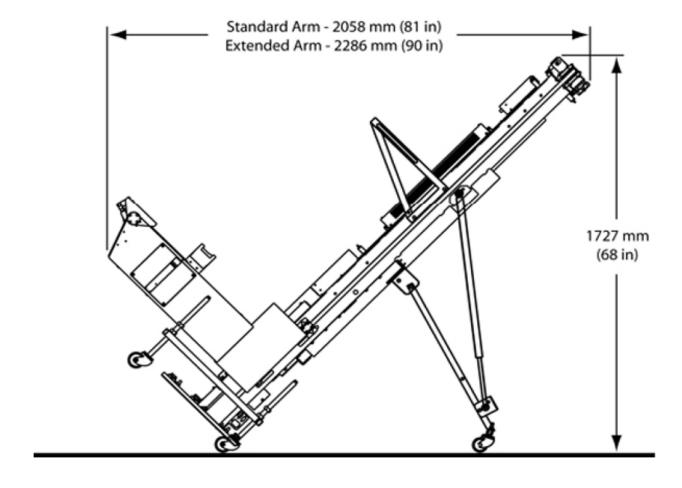
- обеспечить площадку для доставки и разгрузки оборудования GEMSE вблизи места его установки;
- гарантировать, что размеры всех дверных проемов, коридоров, высота потолков достаточны для свободного перемещения оборудования GEMSE от места доставки и разгрузки до места установки;
- гарантировать, что маршрут доставки оборудования приспособлен к его весу;
- обеспечить транспортные и подъемные приспособления и устройства;
- гарантировать, что выполнены все необходимые мероприятия для остановки и разгрузки оборудования на территории общественнои или частной собственности, принадлежащей третьей с стороне.

Проверь грузоподъемность подъемника и размеры.

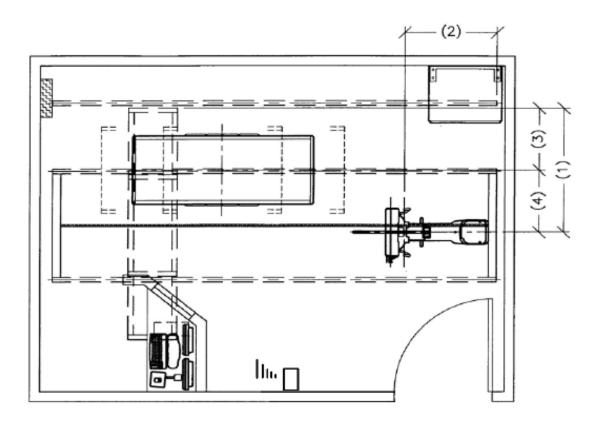
Содержимое ящика		Размеры (мм)	Bec (Net)	
	Высота	Ширина	Глубина	Кг.
Стол	1300	1100	2400	602
Рентгеновская трубка	1355	1039	864	385
Пристенная стойка	1651	940	2440	493
Системный шкаф	1650	900	770	400

Минимальные размеры дверных проемов для доставки системы в здание должны составлять в чистоте 1050x2050мм при ширине коридора 2500мм.

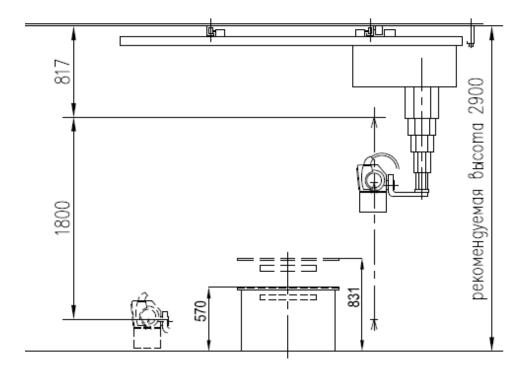
ПРИЕМКА ПОМЕЩЕНИЯ


Представитель GE осталяет за собой право на посещение объекта перед доставкой и монтажом оборудования, чтобы убедиться в выполнении всех подготовительных работ в соответствии с ТЗ (техническим заданием), передаваемым GE Заказчику на финальной стадии.

СИСТЕМНЫЙ ШКАФ С КОЛЕСИКАМИ



СТОЙКА СНИМКОВ НА ТРАНСПОРТИРОВОЧНЫХ ТЕЛЕЖКАХ



ТИПОВОЕ РАСПОЛОЖЕНИЕ СИСТЕМЫ

ТИПОВЫЕ РАЗМЕРЫ СМОНТИРОВАННОГО ОБОРУДОВАНИЯ

Условные обозначения

PDB	Силовой распределительный щит		
	• •		
TN-S, TN-C, TN-C-S, TT, IT	ТИПЫ СИСТЕМ ЗАЗЕМЛЕНИЯ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ		
xDSL	DSL (Digital Subscriber Line) — семейство технологий, позволяющих значительно расширить пропускную способность абонентской линии местной телефонной сети путём использования эффективных линейных кодов и адаптивных методов коррекции искажений линии на основе современных достижений микроэлектроники и методов цифровой обработки сигнала. В аббревиатуре xDSL символ «х» используется для обозначения первого символа в названии конкретной технологии, а DSL обозначает цифровую абонентскую линию DSL. Технологии xDSL позволяют передавать данные со скоростями, значительно превышающими те скорости, которые доступны даже самым лучшим аналоговым и цифровым модемам. Эти технологии поддерживают передачу голоса, высокоскоростную передачу данных и видеосигналов, создавая при этом значительные преимущества как для абонентов, так и для провайдеров. Существующие типы технологий xDSL, различаются в основном по используемой форме модуляции и скорости передачи данных.		
ETHERNET	пакетная технология компьютерных сетей, преимущественно локальных		
	VPN — обобщённое название технологий, позволяющих обеспечить одно или несколько		
VPN	сетевых соединений (логическую сеть) поверх другой сети (например, Интернет). Несмотря на то, что коммуникации осуществляются по сетям с меньшим неизвестным уровнем доверия (например, по публичным сетям), уровень доверия к построенной логической сети не зависит от уровня доверия к базовым сетям благодаря использованию средств криптографии (шифрованию, аутентификация, инфраструктуры публичных ключей, средствам для защиты от повторов и изменения передаваемых по логической сети сообщений). В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: узел-узел, узел-сеть и сеть-сеть. Консультант по планированию монтажа GE Healthcare		

